Weinert Lab

@ Penn State University
Working at the Intersection of Chemistry, Biology, and Bacteria
Lab News

Lab News:​

Fall 2021:

  • Congrats to Dayna on publication of her second first-author paper in Biochemistry!

  • Dayna's PNAS paper is highlighted in Nature Chemical Biology!

  • Our collaborative paper with Anna Karls' group is out in J. Bacteriol. Congrats to Yasha, Nick, and Shikha on their work!

  • Congratulations to Dr. Dayna Patterson on defending her PhD!

  • Yasha passes her PhD defense! Congratulations to Dr. Duggal!

  •  Congratulations to Dayna on the publication of her paper in Proc. Natl. Acad. Sci.!

Summer 2021:

  • Congratulations to Dayna on receiving the NOBCChE Winifred Burks-Houck Graduate Leadership Award!

  • Nushrat passes her comprehensive exam! Congratulations!

Spring 2021:

  • Dayna receives a Graduate Leadership Award and Yasha receives a Graduate Service Award from PSU Chemistry! Congratulations!

  • The lab welcomes new grad students Maddy (CHEM), Florian and Myrrh (BMMB)!


Summer 2020:

Weinert Lab Logo_notext.png
About the Weinert Lab

We are an interdisciplinary group focused on understanding signaling pathways that allow bacteria to sense and respond to their environment. We use tools from chemistry, biochemistry, and molecular biology to develop a molecular level understanding of the proteins and small molecules involved in these systems, as well as their role(s) in bacterial growth and virulence.

Atypical Cyclic Nucleotides

Nucleotides play a number of important roles as second messengers involved in both eukaryotic and prokaryotic signaling. Mounting evidence suggests that there may be additional nucleotide signaling pathways but very little is known about the proteins involved. Our work aims to identify new cyclic nucleotide-dependent pathways in bacteria, including the proteins and signals involved in sensing cNMPs and regulating cNMP levels. These studies provide basic insights into novel cellular signaling pathways and metabolism, as well as the phenotypes controlled by cNMPs.

Research Projects

Bacterial Oxygen Sensing

The ability of heme proteins to reversibly bind diatomic ligands allows organisms to sense changes in their environment. Recently, changes in gaseous ligand concentrations have been proposed to be involved in the pathogenesis of a variety of bacteria. Our work focuses on understanding how the globin coupled sensor protein family senses oxygen and transmits the binding signal into downstream events. Understanding how these diatomic signals are transduced will elucidate the role of heme sensors in bacterial signaling pathways and pathogenesis, as well as potentially yield starting points for the development of novel antibacterial agents.

Microbial Inter-Species Interactions

Bacteria are able to sense other organisms within their environment, such as other bacterial species or potential hosts, and adapt their own growth and behavior. While some of the signals that alert bacteria to the presence of other organisms have been identified, such as quorum sensing molecules, many of the signals are still unknown. In addition, the mechanisms by which the signal recognition is transmitted and how various sensing pathways (environmental, bacterial, and host) are interconnected are not well understood. Our work aims to understand these pathways in the context of microbial competition and pathogenesis.


Emily Weinert

Office: 306 Althouse Laboratory
University Park, PA 16802

Email: eew5225@psu.edu

Phone: (814) 865-3719

Follow us on Twitter

    and Instagram!   

The Weinert lab is part of the Eberly College of Science Rainbow Science Network! 

RSN logo final[1].jpg

For information about applying to graduate programs, please visit The Graduate School website.