top of page
Atypical Cyclic Nucleotides

Nucleotides play a number of important roles as second messengers involved in both eukaryotic and prokaryotic signaling. Mounting evidence suggests that there may be additional nucleotide signaling pathways but very little is known about the proteins involved. Our work aims to identify new cyclic nucleotide-dependent pathways in bacteria, including the proteins and signals involved in sensing cNMPs and regulating cNMP levels. These studies provide basic insights into novel cellular signaling pathways and metabolism, as well as the phenotypes controlled by cNMPs

Bacterial Oxygen Sensing

The ability of heme proteins to reversibly bind diatomic ligands allows organisms to sense changes in their environment. Recently, changes in gaseous ligand concentrations have been proposed to be involved in the pathogenesis of a variety of bacteria. Our work focuses on understanding how the globin coupled sensor protein family senses oxygen and transmits the binding signal into downstream events. Understanding how these diatomic signals are transduced will elucidate the role of heme sensors in bacterial signaling pathways and pathogenesis, as well as potentially yield starting points for the development of novel antibacterial agents.

Research Projects

bottom of page